
ignite Documentation
Release master

Torch Contributors

Jan 18, 2021

NOTES

1 outline 3

2 1 Motivation and concept design 5

3 2 Additonal Features 7

4 3 Install 9

5 4 Quick Start 11

6 5 Documentation 13
6.1 Quick start . 13
6.2 Concepts . 16
6.3 Examples . 16
6.4 FAQ . 16
6.5 About us . 16

i

ii

ignite Documentation, Release master

sharpe is a unified, interactive, general-purpose environment for backtesting or applying machine learning(supervised
learning and reinforcement learning) in the context of quantitative trading.

it’s designed to allow maximum flexibility and simplicity in the practical research process: raw financial data -> feature
engineering -> model training -> trading strategy -> backtesting, come in the reasonable level of abstraction.

core features:

• unified: unify the rule-based and factor-based trading methodology, supervised learning and reinforcement
learning in a framework.

• interactive: state(feature) -> action(portfolio-weight) -> reward(profit-and-loss/returns) bar-by-bar, allow maxi-
mum workflow control.

• general-purpose: market-independent, instrument-independent, trading-frequency-independent.

NOTES 1

ignite Documentation, Release master

2 NOTES

CHAPTER

ONE

OUTLINE

• 1 Motivation and concept design

• 2 Additional Features

• 3 Install

• 4 Quick Start

• 5 Documentation

3

ignite Documentation, Release master

4 Chapter 1. outline

CHAPTER

TWO

1 MOTIVATION AND CONCEPT DESIGN

Before we walk through an end-to-end example how to backtest a trading stratey with sharpe, let’s take a step back and
discuss and understand the difficuties encountering when design a backtest engine for quantitative trading, the answer
derives from quantitative researchers own different types of trading philosophy, trade different types of instruments in
different markets with different trading frequencies.

• different types of trading philosophy: rule-based methodology versus factor-based methodology(supervised
learning versus reinforcement learning)

• different types of instruments in different market: stock, index, ETF, future in different countries and mar-
kets.

• different trading frequencies: intra-day trading(seconds, minutes, hours) and inter-day trading(daily, weekly,
montly)

• different data structures and dtypes: cross-sectional data is used for explaining the cross-sectional variation
in stock returns, time series data is used for timing strategy development, sequential data is used for sequencial-
model, e.g. RNN and it variation algorithm. Besides, supervised learning algorithm and reinforcement learning
need different data architecture.

trading decison can be viewed as a special case of sequential decision-making, which can be formalized as follows: at
each timestamp,

• a agent sees a observation of the state of the environment, that the agent lives in and interacts with

• and then decides on an action to take, based on a policy(can be also called strategy, a mapping from state to
action)

• The agent perceives a reward signal from the environment, a number that tells it how good or bad the current
action is

• see the observation of the next state, and iteratively

The goal of the agent is to find a good policy(strategy) to maximize its cumulative reward.

followwing this concept framwork, sharpe re-conceptualizes the process of trading and provides research with low-
level, common tool to

5

ignite Documentation, Release master

6 Chapter 2. 1 Motivation and concept design

CHAPTER

THREE

2 ADDITONAL FEATURES

• Support rule-based and factor-based trading strategy backtesting

• Helper functions for data/order management and rl algorithms.

• Various environment wrappers(e.g. data type wrapper, support pandas, numpy, pytorch tensor)

• Logging, visualization, and experiments management

• Unit tested, continuously integrated

7

ignite Documentation, Release master

8 Chapter 3. 2 Additonal Features

CHAPTER

FOUR

3 INSTALL

$ git clone https://github.com/StateOfTheArt-quant/sharpe
$ cd sharpe
$ python setup.py install

9

ignite Documentation, Release master

10 Chapter 4. 3 Install

CHAPTER

FIVE

4 QUICK START

The following snippet showcases the whole workflow of trading strategy development in sharpe.

from sharpe.utils.mock_data import create_toy_feature
from sharpe.data.data_source import DataSource
from sharpe.environment import TradingEnv
from sharpe.mod.sys_account.api import order_target_weights
import random
random.seed(111)

feature_df, price_s = create_toy_feature(order_book_ids_number=2, feature_number=3,
→˓start="2020-01-01", end="2020-01-11", random_seed=111)
data_source = DataSource(feature_df=feature_df, price_s=price_s)

env= TradingEnv(data_source=data_source, look_backward_window=4, mode="rl")
print('--')

company_id = "000001.XSHE"

def your_strategy(state):
"""
here is a random strategy, only trade the first stock with a random target

→˓percent
"""

target_percent_of_position = round(random.random(),2)
target_position_dict = {company_id : target_percent_of_position}
print("the target portfolio is to be: {}".format(target_position_dict))
call trade API
action = order_target_weights(target_position_dict)
return action

state = env.reset()

while True:
print("the current trading_dt is: {}".format(env.trading_dt))
action = your_strategy(state)

next_state, reward, done, info = env.step(action)
print("the reward of this action: {}".format(reward))
print("the next state is \n {}".format(next_state))
if done:

break
(continues on next page)

11

ignite Documentation, Release master

(continued from previous page)

else:
state = next_state

env.render()

12 Chapter 5. 4 Quick Start

CHAPTER

SIX

5 DOCUMENTATION

To get started, please, read Quick start and Concepts.

6.1 Quick start

Welcome to sharpe quick start guide that just covers the essentials of getting a project up and walking through the
code.

In several lines of this given code, you can backtest your first rule-based trading strategy as shown below:

6.1.1 Code

from sharpe.utils.mock_data import create_toy_feature
from sharpe.data.data_source import DataSource
from sharpe.environment import TradingEnv
from sharpe.mod.sys_account.api import order_target_weights
import random
random.seed(111)

feature_df, price_s = create_toy_feature(order_book_ids_number=2, feature_number=3,
→˓start="2020-01-01", end="2020-01-11", random_seed=111)
data_source = DataSource(feature_df=feature_df, price_s=price_s)

env= TradingEnv(data_source=data_source, look_backward_window=4)
print('--')

company_id = "000001.XSHE"

def your_strategy(state):
"""
here is a random strategy, only trade the first stock with a random target

→˓percent
"""

target_percent_of_position = round(random.random(),2)
target_position_dict = {company_id : target_percent_of_position}
print("the target portfolio is to be: {}".format(target_position_dict))
call trade API
action = order_target_weights(target_position_dict)
return action

(continues on next page)

13

ignite Documentation, Release master

(continued from previous page)

state = env.reset()

while True:
print("the current trading_dt is: {}".format(env.trading_dt))
action = your_strategy(state)

next_state, reward, done, info = env.step(action)
print("the reward of this action: {}".format(reward))
print("the next state is \n {}".format(next_state))
if done:

break
else:

state = next_state
env.render()

6.1.2 Explanation

Now let’s break up the code and review it in details. the first step is to create your custom data source.

the input of DataSource involves in one pd.DataFrame(called feature_df) and one pd.Series(called price_s) with mul-
tiindex.

feature_df, price_s = create_toy_feature(order_book_ids_number=2, feature_number=3,
→˓start="2020-01-01", end="2020-01-11", random_seed=111)
data_source = DataSource(feature_df=feature_df, price_s=price_s)

the feature_df is a multindex dataframe, the first index is instrument name, the second index is timestamp, the data
containw your instruments’ features(like the raw feature, open, high, low, close ,volume or features(factors) after
feature engineering), that is the states of the market you care about.

feature_1 feature_2 feature_3
order_book_id datetime
000001.XSHE 2020-01-01 -1.133838 0.384319 1.496554

2020-01-02 -0.355382 -0.787534 -0.459439
2020-01-03 -0.059169 -0.354174 -0.735523
2020-01-04 -1.183940 0.238894 -0.589920
2020-01-05 -1.440585 0.773703 -1.027967
2020-01-06 -0.090986 0.492003 0.424672
2020-01-07 1.283049 0.315986 -0.408082
2020-01-08 -0.067948 -0.952427 -0.110677
2020-01-09 0.570594 0.915420 -1.669341
2020-01-10 0.482714 -0.310473 2.394690
2020-01-11 1.550931 -0.646465 -0.928937

000002.XSHE 2020-01-01 -1.654976 0.350193 -0.141757
2020-01-02 0.521082 -0.020901 -1.743844
2020-01-03 -0.799159 -1.303570 0.178105
2020-01-04 -0.334402 -0.306027 -0.332406
2020-01-05 1.962947 0.719242 1.142887
2020-01-06 2.082877 -1.284648 0.538128
2020-01-07 -0.044539 2.597164 -0.058266
2020-01-08 -0.945287 0.541172 -0.055009
2020-01-09 1.120021 -0.191643 -0.610138

(continues on next page)

14 Chapter 6. 5 Documentation

ignite Documentation, Release master

(continued from previous page)

2020-01-10 -0.444579 -2.204009 -0.430670
2020-01-11 -0.425093 0.147292 0.424924

the price_s is a multiindex pd.Series, contraining the price of the instrument at different timestamp. this is an important
component of the DataSource, which is used to backtest.

order_book_id datetime
000001.XSHE 2020-01-01 42.31

2020-01-02 43.61
2020-01-03 40.40
2020-01-04 43.11
2020-01-05 46.29
2020-01-06 43.01
2020-01-07 38.62
2020-01-08 46.05
2020-01-09 45.38
2020-01-10 39.80
2020-01-11 42.19

000002.XSHE 2020-01-01 10.59
2020-01-02 13.08
2020-01-03 12.07
2020-01-04 19.72
2020-01-05 19.09
2020-01-06 16.76
2020-01-07 11.15
2020-01-08 19.58
2020-01-09 10.92
2020-01-10 16.30
2020-01-11 19.03

Name: price, dtype: float64

Next we define the environment. the input of TradingEnv is the data_source we have created and a int parameter,
called look_backward_window, which tells the enviontment, at each timestamp. we can observe the past feature with
window size==4, which consist the state of the environment at that timestamp. that means the shape of the state of
environment is (instrument_numbers, look_backward_window, feature_numbers)

env= TradingEnv(data_source=data_source, look_backward_window=4)

The most interesting part of the code snippet is define your trading strategy which is a mapping from state to investment
action(all instrument investment weight). it actually involve in two steps. the first step is to determine the investment
percent(weight) of instruments based on the current state, which is your core logic of trading strategy. the output of
this step is a dict {instrument_1_name: percent1, instrument_2_name: percent2},. the next step is call builtin trade
API order_target_portfolio to create action(a order list)

def your_strategy(state):
"""
here is a random strategy, only trade the first stock with a random target

→˓percent
"""
#step1
target_percent_of_postion = round(random.random(),2)
target_pososition_dict = {company_id : target_percent_of_postion}
print("the target portfolio is to be: {}".format(target_pososition_dict))
#step2: call trade API
action = order_target_portfolio(target_pososition_dict)
return action

6.1. Quick start 15

ignite Documentation, Release master

the last step is backtest your strategy, iterate all available timestamps

state = env.reset() #the initial state of environment
while True:

print("the current trading_dt is: {}".format(env.trading_dt))
action = your_strategy(state)

next_state, reward, done, info = env.step(action)
print("the reward of this action: {}".format(reward))
print("the next state is \n {}".format(next_state))
if done:

break
else:

state = next_state
env.render()

6.2 Concepts

6.2.1 DataSource

6.3 Examples

• risk parity strategy

6.4 FAQ

In this section we grouped answers on frequently asked questions and some best practices of using sharpe.

6.5 About us

6.5.1 Authors

The following people are currently core contributors to sharpe’s development and maintenance:

• Yu Jiang @walkacross

6.5.2 Join Core Team

We are looking for motivated contributors to become collaborators and help out with the project. We can start consid-
ering a candidate after several successfully merged Github pull requests. If you are interested, for more details, please,
contact yu jiang (@walkacross) via email yujiangallen at 126.com.

16 Chapter 6. 5 Documentation

https://github.com/StateOfTheArt-quant/sharpe/tree/main/example/rule-based-strategy/risk_parity_strategy.py
https://github.com/walkacross

ignite Documentation, Release master

6.5.3 Citing sharpe

If you use sharpe in a scientific publication, we would appreciate citations to the project.

@misc{sharpe,
author = {Yu Jiang},
title = {Sharpe: a unified, interactive, general-purpose environment in the context

→˓of quantitative trading},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/StateOfTheArt-quant/sharpe}},

}

6.5.4 Acknowledgements

sharpe derived from our initial project trading_gym, which now is a event-driven(or observer) design pattern, the code
highly inspired by RQALPHA

This library is named sharpe to respect William F. Sharpe

6.5. About us 17

https://github.com/StateOfTheArt-quant/trading_gym
https://github.com/ricequant/rqalpha
https://en.wikipedia.org/wiki/William_F._Sharpe

	outline
	1 Motivation and concept design
	2 Additonal Features
	3 Install
	4 Quick Start
	5 Documentation
	Quick start
	Concepts
	Examples
	FAQ
	About us

